# Periodic Billiard Orbits on Surfaces of Revolution 

Shanshan Cao (Boston U.), Jack Klawitter (Middlebury), Kevin Manogue (Lafayette)

Ithaca College Dynamical Systems REU, Summer 2021

## Background

## Motivation: Periodicity on Rectangles

Definition. A $w \times h$ rectangle is a billiard board on a surface of revolution defined by segments of parallels on the top and bottom of coordinate width $w$ and segments of meridians on the left and right of coordinate length $h$.
Definition. A billiard orbit is periodic if it returns to the initial point with the inital angle after $n$ bounces. We call $n$ the period of the orbit.

## Rectangle Periodicity Theorem

In a $w \times h$ rectangular billiard board, orbit $\gamma$ is periodic in $B$ if and only if there exist natural numbers $i, j \in \mathbb{N}$ such that

$$
i \rho_{\gamma} \equiv 2 j w \quad \bmod 2 \pi .
$$

Then the period of $\gamma$ is given by

$$
\operatorname{Per}(\gamma)= \begin{cases}2 i+2 j & \text { if } \gamma \text { reaches the top of the rectangle, } \\ i+2 j & \text { otherwise },\end{cases}
$$

where $i$ and $j$ are the smallest such that the above is satisfied.

## Unfoldings and Rotation

An orbit $\gamma$ on a rectangle can be unfolded over meridian sides. We can quantify how fast an unfolded orbit rotates around the $z$-axis using a rotation number $\rho_{\gamma}$.


Unfolding


An example of a periodic- 14 orbit on a $w \times h$ rectangle


A top down view of $\rho$ and $w$ in an unfolding of a period-14 orbit, where $i=3, j=4$ satisfies the periodicity conditions.

Periodicity occurs when an unfolded orbit intersects an even reflection of $P$. This occurs when a multiple of the rotation number lines up with an even multiple of the width

Corollaries

Corollary. An equatorial triangle on a sphere is an $h \times w$ rectangle with base at the equator and top at the north pole. All orbits on such triangles are periodic if

$$
w=\frac{i}{2 j} \pi .
$$

Otherwise, no orbits are periodic
Proof: On a sphere, all billiard orbits have $\rho=\pi$. Inserting this into our formula shows that every orbit $\gamma$ on such a table is periodic with $\operatorname{Per}(\gamma)=i+2 j$.

Corollary. There exist billiard tables on the sphere that are unilluminable: if the walls of the table were mirrored, any candle placed inside it would fail to light up the whole room, no matter where it was placed.
Proof: This follows from constructing the billiard board out of two equatorial triangles with $w=\frac{1}{2 j} \pi$ and two small $w \times h$ rectangles, all connected along their bases.


Two views of light rays coming from a single point $P$ in an unilluminable room. No matter where $P$ is positioned in the lower triangle, the square region off the upper triangle is never illuminated.

Acknowledgements
We would like to thank our research advisor Professor Visscher for his ouidance and rood humor. We would also like to thank Professors Galanthay and Brown, as well as the rest of the REU Professors Galanthay and Brown, as well as the rest of the REU


